Algebra III Back Paper Exam December 2004

Instructions. Attempt all questions. The field of rational numbers is denoted by Q.

- 1. (a) Identify the group \mathbb{F}_4^+ . (3)
 - (b) Let p be a prime. Describe the integers n such that there exist a finite field K of order n and an element in the multiplicative group K^{\times} whose order is p. (3)
 - (c) Let p be a prime number. Find the number of monic irreducible polynomials of degree 2 in the ring $\mathbb{F}_p[X]$. (4)
- 2. (a) Let F be a field of characteristic zero. Let f' denote the derivative of a polynomial $f \in F[X]$, and let g be an irreducible polynomial which is a common divisor of f and f'. Prove that g^2 divides f. (5)
 - (b) Let α be a complex root of the irreducible polynomial $X^3 3X + 4$. Find the inverse of $\alpha^2 + \alpha + 1$ in $\mathbb{Q}(\alpha)$ explicitly, in the form $a + b\alpha + c\alpha^2$, with $a, b, c \in \mathbb{Q}$. (5)
- 3. (a) Let β , γ be complex numbers of degree 3 over \mathbb{Q} , and let $K = \mathbb{Q}(\beta, \gamma)$. Determine the possibilities of $[K : \mathbb{Q}]$. (3)
 - (b) Let ζ , η be complex roots of irreducible polynomials $f(X), g(X) \in \mathbb{Q}[X]$ respectively. Let $F = \mathbb{Q}(\zeta)$ and $K = \mathbb{Q}(\eta)$. Prove that f(X) is irreducible in K[X] if and only if g(X) is irreducible in F[X]. (3)
 - (c) Determine the irreducible polynomial of $\sqrt{3} + \sqrt{5}$ over $\mathbb{Q}(\sqrt{5})$ and over $\mathbb{Q}(\sqrt{15})$. (4)
- 4. (a) Prove that every Galois extension K over F whose Galois group is the Klein four group is biquadratic. (4)
 - (b) Let C_n denote the cyclic group of order n. Let K be a Galois extension of a field F such that $G(K/F) = C_2 \times C_{12}$. How many intermediate fields L are there such that
 - 1. [L:F]=4,
 - 2. [L:F]=9
 - 3. $G(K/L) \approx C_4$ (6)
- 5. (a) Let $F \subset L \subset K$ be fields. Prove or disprove:
 - 1. If K/F is Galois, then K/L is Galois.
 - 2. If K/F is Galois, then L/F is Galois.
 - 3. If L/F is Galois and K/L is Galois, then K/F is Galois. (6)
 - (b) Let G be a finite group. Prove that there exists a field F and a Galois extension K of F whose Galois group is G. (4)
- 6. (a) Let K be a finite extension of \mathbb{Q} . Prove that there exists an element $\xi \in K$ such that $K = \mathbb{Q}(\xi)$. (5)
 - (b) Let L be the splitting field of the polynomial $X^3 + X + 1$ over \mathbb{Q} . Find an element $\theta \in L$ such that $L = \mathbb{Q}(\theta)$. (2)
 - (c) Let p and q be prime numbers and K be the splitting field of $X^p q$ over \mathbb{Q} . Prove that $[K:\mathbb{Q}] = p(p-1)$. (3)